Creating POS Tagging and Dependency Parsing Experts via Topic Modeling
نویسندگان
چکیده
Part of speech (POS) taggers and dependency parsers tend to work well on homogeneous datasets but their performance suffers on datasets containing data from different genres. In our current work, we investigate how to create POS tagging and dependency parsing experts for heterogeneous data by employing topic modeling. We create topic models (using Latent Dirichlet Allocation) to determine genres from a heterogeneous dataset and then train an expert for each of the genres. Our results show that the topic modeling experts reach substantial improvements when compared to the general versions. For dependency parsing, the improvement reaches 2 percent points over the full training baseline when we use two topics.
منابع مشابه
Similarity Based Genre Identification for POS Tagging & Dependency Parsing Experts
POS tagging and dependency parsing achieve good results for homogeneous datasets. However, these tasks are much more difficult on heterogeneous datasets. In (Mukherjee et al., 2016, 2017), we address this issue by creating genre experts for both POS tagging and parsing. We use topic modeling to automatically separate training and test data into genres and to create annotation experts per genre ...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملPOS Tagging Experts via Topic Modeling
Part of speech taggers generally perform well on homogeneous data sets, but their performance often varies considerably across different genres. In this paper we investigate the adaptation of POS taggers to individual genres by creating POS tagging experts. We use topic modeling to determine genres automatically and then build a tagging expert for each genre. We use Latent Dirichlet Allocation ...
متن کاملبررسی مقایسهای تأثیر برچسبزنی مقولات دستوری بر تجزیه در پردازش خودکار زبان فارسی
In this paper, the role of Part-of-Speech (POS) tagging for parsing in automatic processing of the Persian language is studied. To this end, the impact of the quality of POS tagging as well as the impact of the quantity of information available in the POS tags on parsing are studied. To reach the goals, three parsing scenarios are proposed and compared. In the first scenario, the parser assigns...
متن کاملJoint POS Tagging and Dependency Parsing with Transition-based Neural Networks
While part-of-speech (POS) tagging and dependency parsing are observed to be closely related, existing work on joint modeling with manually crafted feature templates suffers from the feature sparsity and incompleteness problems. In this paper, we propose an approach to joint POS tagging and dependency parsing using transitionbased neural networks. Three neural network based classifiers are desi...
متن کامل